Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density

Error density estimation in a nonparametric functional regression model with functional predictor and scalar response is considered. The unknown error density is approximated by a mixture of Gaussian densities with means being the individual residuals, and variance as a constant parameter. This proposed mixture error density has a form of a kernel density estimator of residuals, where the regre...

متن کامل

Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors

This paper develops a sampling algorithm for bandwidth estimation in a nonparametric regression model with continuous and discrete regressors under an unknown error density. The error density is approximated by the kernel density estimator of the unobserved errors, while the regression function is estimated using the Nadaraya-Watson estimator admitting continuous and discrete regressors. We der...

متن کامل

A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density

We propose to approximate the unknown error density of a nonparametric regression model by a mixture of Gaussian densities with means being the individual error realizations and variance a constant parameter. This mixture density has the form of a kernel density estimator of error realizations. We derive an approximate likelihood and posterior for bandwidth parameters in the kernel–form error d...

متن کامل

Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density

We approximate the error density of a nonparametric regression model by a mixture of Gaussian densities with means being the individual error realizations and variance a constant parameter. We investigate the construction of a likelihood and posterior for bandwidth parameters under this Gaussian-component mixture density of errors in a nonparametric regression. A Markov chain Monte Carlo algori...

متن کامل

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonparametric Statistics

سال: 2014

ISSN: 1048-5252,1029-0311

DOI: 10.1080/10485252.2014.916806